home *** CD-ROM | disk | FTP | other *** search
- ;;;; "modular.scm", modular fixnum arithmetic for Scheme
- ;;; Copyright (C) 1991, 1993, 1995 Aubrey Jaffer.
- ;
- ;Permission to copy this software, to redistribute it, and to use it
- ;for any purpose is granted, subject to the following restrictions and
- ;understandings.
- ;
- ;1. Any copy made of this software must include this copyright notice
- ;in full.
- ;
- ;2. I have made no warrantee or representation that the operation of
- ;this software will be error-free, and I am under no obligation to
- ;provide any services, by way of maintenance, update, or otherwise.
- ;
- ;3. In conjunction with products arising from the use of this
- ;material, there shall be no use of my name in any advertising,
- ;promotional, or sales literature without prior written consent in
- ;each case.
-
- (define (symmetric:modulus n)
- (cond ((or (not (number? n)) (not (positive? n)) (even? n))
- (slib:error 'symmetric:modulus n))
- (else (quotient (+ -1 n) -2))))
-
- (define (modulus->integer m)
- (cond ((negative? m) (- 1 m m))
- ((zero? m) #f)
- (else m)))
-
- (define (modular:normalize m k)
- (cond ((positive? m) (modulo k m))
- ((zero? m) k)
- ((<= m k (- m)) k)
- ((or (provided? 'bignum)
- (<= m (quotient (+ -1 most-positive-fixnum) 2)))
- (let* ((pm (+ 1 (* -2 m)))
- (s (modulo k pm)))
- (if (<= s (- m)) s (- s pm))))
- ((positive? k) (+ (+ (+ k -1) m) m))
- (else (- (- (+ k 1) m) m))))
-
- ;;;; NOTE: The rest of these functions assume normalized arguments!
-
- (require 'logical)
-
- (define (modular:extended-euclid x y)
- (define q 0)
- (do ((r0 x r1) (r1 y (remainder r0 r1))
- (u0 1 u1) (u1 0 (- u0 (* q u1)))
- (v0 0 v1) (v1 1 (- v0 (* q v1))))
- ;; (assert (= r0 (+ (* u0 x) (* v0 y))))
- ;; (assert (= r1 (+ (* u1 x) (* v1 y))))
- ((zero? r1) (list r0 u0 v0))
- (set! q (quotient r0 r1))))
-
- (define (modular:invertable? m a)
- (eqv? 1 (gcd (or (modulus->integer m) 0) a)))
-
- (define (modular:invert m a)
- (cond ((eqv? 1 (abs a)) a) ; unit
- (else
- (let ((pm (modulus->integer m)))
- (cond
- (pm
- (let ((d (modular:extended-euclid (modular:normalize pm a) pm)))
- (if (= 1 (car d))
- (modular:normalize m (cadr d))
- (slib:error 'modular:invert "can't invert" m a))))
- (else (slib:error 'modular:invert "can't invert" m a)))))))
-
- (define (modular:negate m a)
- (if (zero? a) 0
- (if (negative? m) (- a)
- (- m a))))
-
- ;;; Being careful about overflow here
- (define (modular:+ m a b)
- (cond ((positive? m)
- (modulo (+ (- a m) b) m))
- ((zero? m) (+ a b))
- ((negative? a)
- (if (negative? b)
- (let ((s (+ (- a m) b)))
- (if (negative? s)
- (- s -1 m)
- (+ s m)))
- (+ a b)))
- ((negative? b) (+ a b))
- (else (let ((s (+ (+ a m) b)))
- (if (positive? s)
- (+ s -1 m)
- (- s m))))))
-
- (define (modular:- m a b)
- (cond ((positive? m) (modulo (- a b) m))
- ((zero? m) (- a b))
- (else (modular:+ m a (- b)))))
-
- ;;; See: L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
- ;;; with Splitting Facilities." ACM Transactions on Mathematical
- ;;; Software, 17:98-111 (1991)
-
- ;;; modular:r = 2**((nb-2)/2) where nb = number of bits in a word.
- (define modular:r
- (ash 1 (quotient (integer-length most-positive-fixnum) 2)))
- (define modular:*
- (if (provided? 'bignum)
- (lambda (m a b)
- (cond ((zero? m) (* a b))
- ((positive? m) (modulo (* a b) m))
- (else (modular:normalize m (* a b)))))
- (lambda (m a b)
- (let ((a0 a)
- (p 0))
- (cond
- ((zero? m) (* a b))
- ((negative? m)
- "This doesn't work for the full range of modulus M;"
- "Someone please create or convert the following"
- "algorighm to work with symmetric representation"
- (modular:normalize m (* a b)))
- (else
- (cond
- ((< a modular:r))
- ((< b modular:r) (set! a b) (set! b a0) (set! a0 a))
- (else
- (set! a0 (modulo a modular:r))
- (let ((a1 (quotient a modular:r))
- (qh (quotient m modular:r))
- (rh (modulo m modular:r)))
- (cond ((>= a1 modular:r)
- (set! a1 (- a1 modular:r))
- (set! p (modulo (- (* modular:r (modulo b qh))
- (* (quotient b qh) rh)) m))))
- (cond ((not (zero? a1))
- (let ((q (quotient m a1)))
- (set! p (- p (* (quotient b q) (modulo m a1))))
- (set! p (modulo (+ (if (positive? p) (- p m) p)
- (* a1 (modulo b q))) m)))))
- (set! p (modulo (- (* modular:r (modulo p qh))
- (* (quotient p qh) rh)) m)))))
- (if (zero? a0)
- p
- (let ((q (quotient m a0)))
- (set! p (- p (* (quotient b q) (modulo m a0))))
- (modulo (+ (if (positive? p) (- p m) p)
- (* a0 (modulo b q))) m)))))))))
-
- (define (modular:expt m a b)
- (cond ((= a 1) 1)
- ((= a (- m 1)) (if (odd? b) a 1))
- ((zero? a) 0)
- ((zero? m) (integer-expt a b))
- (else
- (logical:ipow-by-squaring a b 1
- (lambda (c d) (modular:* m c d))))))
-
- (define extended-euclid modular:extended-euclid)
-